Tesla Tekercs
Ez a  varázslatos Tesla tekercs, érdekes tudományos kísérlet, az érdeklődő gyerekek és felnőtek részére is. Amely magas hőmérsékletű és nagy nyomású plazmát állít elő, képes "énekelni",  vezeték nélküli áram átvitelre, fluoreszkáló lámpákat világításra bírni és csodálatos plazma ívet húzni.


Nikola Tesla 1891-ben építette meg először a róla elnevezett Tesla-tekercset.

Ő volt az első, aki az elektromos rezonancia jelenségét a gyakorlatban is megvalósította és felhasználta. A Tesla-tekercs legalább két légmagos tekercsből áll, ami nagyfeszültséget állít elő magas frekvencián. A nagyfeszültség akár 10 millió Voltig is terjedhet, a frekvencia pedig több MHz[1] is lehet. Általában 25 kHz és 2 MHz között mozog. A Tesla-tekercs abban különbözik a transzformátortól, hogy a primer és a szekunder kör is rezonanciában van egymással, de nem a hálózati frekvenciával (50/60 Hz). A Tesla-tekercs áramkörét transzformátor biztosítja, ami legalább néhány kV-ot (legalább 4-12 kV) táplál.

Tesla több, különböző rendeltetésű és működésű Tesla-tekercset épített, ezek mindegyike egy-egy új felhasználási terület alapjait hozta létre, fejlesztései a nagyfrekvenciás generátoroknak, az elektromos áram vezeték nélküli továbbításának, az elektroterápiás készülékeknek, valamint az összes ma használatos hírközlő berendezésnek az alapvető elemévé váltak.


Működési elve


A primer oldali rezgőkör áll(hat) egy transzformátorból, egy vagy több kondenzátorból, valamint egy primer tekercsből és egy szikraközből, a szekunder oldal egy nagy menetszámú szekunder tekercsből és egy kondenzátorból áll. A kondenzátor(ok)ra feszültség jut a meghajtó hálózatról (pl. transzformátor szekunder tekercséről). A kondenzátorra kerülő feszültség maximum addig a feszültségszintig tölti fel a kondenzátort, míg a feszültség eléri a szikraköz átütési feszültségét. A szikraközben a dielektrikumon keresztül (korábban olaj, később levegő) átütés jön létre. Ez az átütés ionizálja a szigetelő közeget, így annak ellenállása drasztikusan lecsökken. Ezzel az eddig szakadásnak tekinthető áramkör záródik, és a primer tekercsen keresztül magas frekvenciájú váltóáram (más néven rezonáló áram) folyik. A primer tekercsen folyó áram a jobb kéz szabály szerinti mágneses teret hoz létre. A mágneses tér a tekercs belsejében összegződik, és azonos irányú. Nagysága a primer gerjesztés függvénye, mely az átfolyó áram és a menetszám szorzatával megegyező. Az ionizáció megszűnésével (például az ionizált csatorna levegővel való kifújása) a zárt áramkör megszakad, és újra kezdődik a kondenzátor töltése. Mivel a létrejövő mágneses fluxus a kondenzátor-primer tekercs önindukciója-a szikraköz átütési feszültsége (valamint annak kioltása) által meghatároz egy frekvenciát, a mágneses fluxus időben változó nagyságú lesz. Az így létrejövő mágneses erővonalak metszik a szekunder tekercs meneteit, és abban feszültséget indukálnak. A későbbi kiviteleknél szikraköz helyett szigetelőanyagból készült kör alakú tárcsán érintkezőket helyeztek el, melyek elektromos motor meghajtással egy körülfordulás alatt az érintkezők számától függően zárták az áramkört. Ezzel a megoldással az áramkör zárási frekvenciája egyenes arányban állt a motor fordulatszámával, és az érintkezők számával. Mivel a tekercsek önindukciója, és a felhasznált kondenzátor(ok) kapacitása a megszakításokkal meghatározott időállandót határoz meg, oszcillátorként működik, és rezonancia lép fel. A fellépő rezonancia biztosítja, hogy a rezgés fenntartásához sokkal kisebb energia szükséges, másfelől a frekvencia (eltérően a transzformátoroktól) nem a tápláló hálózat frekvenciájától függ.

Ez legegyszerűbben az inga, (vagy a hinta) mozgásából érthető meg. A felső holtponton a felfüggesztett súly a legnagyobb helyzeti (gravitációs) energiával rendelkezik. Az alsó holtpont felé tartva ez a helyzeti energia 0-ra csökken, és mozgási energiává alakul át. Túljutva az alsó holtponton a mozgási energiája csökken, és helyzeti energiává alakul át, ami a felső holtponton éri el maximumát, és a mozgási energia 0-ra csökken. A folyamat kezdődik elölről. Ez a mozgás a végtelenségig fennmaradna, ha nem lenne a levegő közegellenállása (és a hintánál a felfüggesztés súrlódása). Ha mindig pont abban az időpillanatban közölnek energiát a rendszerrel, mely annak mozgását erősíti, és ezt következetesen mindig ugyanakkor teszik, a lengés minimális energiaráfordítással a végtelenségig fenntartható.

Nagyon sok kapcsolása ismert a Tesla-tekercsnek.

Meghajthatók 12-9000 V-ról, az alapelv viszont ugyanaz. Maga a Tesla-tekercs egy primer és egy szekunder oldali rezgőkörből áll. Nikola Tesla nemcsak Tesla-tekercset épített, hanem egy Tesla adót (magnifiert) is. A kapcsolási rajz hasonló, a működési elv is. Tesla azért készítette el Colorado Springs-ben ezt az úgynevezett "Erősítő adó"-t, mert a Tesla-tekercsnél túl nagy volt a veszteség, nagyon szórt volt a mágneses fluxus a primer tekercsben.